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Introduction 
 
 

Over the past decade, reverse osmosis (RO) has become the dominant method of 
desalinating seawater to address water scarcity in arid regions. Widespread adoption of seawater 
reverse osmosis (SWRO) technology has been limited by the cost of desalination relative to 
other, oftentimes more environmentally damaging, methods of obtaining potable water. 
Decreasing water cost has become a primary focus for the desalination industry through 
innovations in energy recovery, module design and pretreatment [1]. However, the SWRO 
membrane is still based on the same material platform developed 30 years ago. 
 

In 2007, a team at the University of California, Los Angeles (UCLA) reported 
development of thin-film nanocomposite (TFN) membranes that incorporated nanoparticles into 
an interfacially-formed polyamide thin film [2]. This new membrane material, initially tested in 
brackish water, doubled membrane permeability while maintaining salt rejection at industry 
standards. Changes potentially enabling a reduction in desalinated water cost by decreasing 
energy consumption, increasing plant output, or a combination of both. 
 

Optimized for use in seawater desalination, nanocomposite membranes currently have 
more than twice the permeability of some established pure polymer membranes [3]. A 
manufacturing facility has been built to commercialize this nanocomposite material in an 
industry standard 8040 SWRO module. 
 

This paper will present system performance and operational data from a retrofit 
installation in the United States which has demonstrated the ability to increase the output of a 
small 22,300 gpd (84.5 m3/d) plant to 26,900 gpd (102 m3/d), while simultaneously dropping the 
operating pressure from greater than approximately 805 psi (55.5 bars) to approximately 732 psi 
(50.5 bars). 
 
 

Methods 
 
 
4 in. (10 cm) Element Production 

Prior to fabrication of a coater optimized for TFN manufacturing, trials of several TFN 
formulations were made on an older 40 in. (1 m) wide flatsheet coating machine. Performance 
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there was a potential that sufficiently high or low pH could chemically degrade the added 
nanoparticles, leaving holes in the separating layer and leading to an increase in salt passage. 
 

As a means of determining chemical stability, a CIP was performed on the element early 
in its operation. After allowing sufficient time for performance to stabilize (~1,000 hrs), a CIP 
cycle was performed even though no loss of permeability had occurred. This CIP was used not to 
evaluate effectiveness of the cleaning agents with the membrane, but instead to evaluate the 
chemical stability of the separating layer. After the CIP, the measured flux and rejection matched 
initial performance. As nanoparticle degradation and/or deterioration of the nanocomposite 
matrix would have led to a performance loss, this result indicates a stability of the TFN 
membrane to the conditions used. 
 

A second CIP was performed later in the module’s life after the fouling event previously 
described. After this cleaning, performance began to improve and eventually reached its baseline 
performance. Again, the stable flux and rejection suggest no evidence for chemical degradation.   
 
8 in. (20 cm) Element Performance 

After the 4 in. (10 cm) testing was completed, a new manufacturing facility was built 
allowing TFN membranes to be prepared with performance exceeding that demonstrated in the 
one year trial. This membrane was used to prepare spiral-wound elements containing 365 ft2 (34 
m2) of active area. To provide a system level performance baseline, commercial modules were 
also purchased and the system was run in a typical manner. Due to time constraints, the test 
period of the commercial modules was limited to 500 hrs, and the information below shows a 
similar 500-hr test period for the nanocomposite Qfx modules. System operating conditions in 
both stages of the testing are shown below (Table 1). Energy consumption was measured on the 
RO unit and, as such, only includes power consumed by the RO system itself (excludes 
pretreatment and intake). 
 

Table 1. Summary of System Operating Conditions 
 

 Qfx Commercial 
Water Production 26,945 gpd  

(102 m3/d) 
22,322 pgd  
(84.5 m3/d) 

System Recovery 44.1% 42.4% 
Feed Pressure 719 – 741 psi 

(49.6 – 51.1 bars) 
805 – 848 psi 

(55.5 – 58.5 bars) 
Energy Consumption 6.55 kwh/1000g 

(1.73 kwh/m3) 
7.31 kwh/1000g 
(1.93 kwh/m3) 

Water Quality 192 – 246 ppm 110 – 165 ppm 
Water Temp 55 - 61°F 

(12.5 – 16.1° C)  
53 - 59°F 

(11.7 – 15.1°C) 
 

Baseline testing with the seven commercial elements was performed at a system recovery 
of 42.4% and a design flux of 8 GFD (13.5 lmh). Feed flow was 52,570 gpd (199 m3/d). As can 
be seen below (Figure 5), operation was fairly constant throughout the test with an average 
operating pressure of 821 psi (56.6 bars). 



  

 

 
Figure 5. Commercial baseline pressure 

 
After this stage of testing was complete, Qfx modules were installed. Due to the 

increased membrane permeability, the feed pressure was reduced to 725 psi (50.1 bars) while the 
average system flux actually increased to 10 GFD (16.9 lmh). To maintain a constant concentrate 
flow to the ERI device, feed flow rate was increased to 61,024 gpd (23l m3/d). Similar to the 
commercial baseline performance, pressures were constant throughout the test period (Figure 6). 
 

 
Figure 6. Qfx pressure 

 
8 in. (20 cm) Performance improvements 
 While the first phase of testing showed the ability of the first generation Qfx module to 
reduce energy consumption and increase water production, Table 1 demonstrates a decrease in 
observed rejection that led to an increase in permeate TDS.  As a result, a series of improvements 
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were made to the membrane and element to yield better water quality. These versions were each 
installed into the 8 in. (20 cm) test machine and operated for about one month.   Figure 7 shows 
the progression in system performance as these alterations were made. 
 
 

 
Figure 7. Qfx element improvements 

The most noticeable shift resulted from the improvements in version 2.3 where system 
salt rejection increased from 99.3% to 99.5%.  That shift corresponded to a reduction in permeate 
TDS to a value between 137 ppm and 175 ppm for the testing range discussed in Table 1.  
Although changes to versions 2.4 and 2.5 were focused on improving product consistency, an 
additional 9% increase in permeability was observed in the alterations applied to versions 2.4 
and 2.5.  Normalized to standard testing conditions (32,000 ppm NaCl, 5 ppm boron, 800 psi, 
25°C, pH 8, 8% recovery), these field data indicate the element performance was 13,200 gpd and 
99.75%. 
 
 

Conclusions 
 
 

Nanocomposite membrane technology has been used to develop a new commercial 
SWRO module. Operation of this Qfx element over the course of this testing has given some 
insight as to the expected behavior of this new membrane. The relatively stable flux and rejection 
has indicated that the performance enhancement of the nanocomposite film is not short-term, but 
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rather a fundamentally different separation layer. Further, conditions that would have led to a 
loss of nanoparticles would have also led to an increase in passage; the lack of such a change 
supports the inherent stability of the nanocomposite film. This includes the high and low pH 
conditions used during the CIP cycles and the mechanical stresses applied during repeated start-
ups and shutdowns. Although further testing is needed to fully validate these findings, the 
relatively modest flux loss and later flux recovery during a red tide event also suggest the 
possibility of improved tolerance to some biofouling events and may open up the possibility of 
increasing system design flux. 
 

Operational experience from this work demonstrates an ability to retrofit existing plants 
containing conventional 8 in. by 40 in. (20 cm by 100 cm) modules in order to not only increase 
capacity without additional capital investment in equipment (by 21% in this test), but in some 
instances actually reduce specific energy consumption as well (10% in this test).   Further, 
multiple pilot installations have now been running these elements and have desalinated more 
than 13,800,000 gallons of seawater over a combined 28,000 hours. 
 

In the last five years, research into nanocomposite RO membranes has resulted in the 
development of what is now a commercially-viable mixed matrix membrane material for 
seawater desalination. In this relatively short period, nanocomposite membranes have shown the 
potential for performance exceeding that of existing commercial products based on the 
standardized polymer chemistry used in RO membranes for the last several decades. This 
technology has now been commercialized and is available for sale on a limited basis. 
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